MIWEBPC
TODO SOBRE PCS

TIPOS DE PROCESADORES

PROCESADORES DE 32 BITS

Los buses de datos y de direcciones son usualmente más anchos que 32 bits, a pesar de que éstas se almacenen y manipulen internamente en el procesador como cantidades de 32 bits. Por ejemplo, el Pentium Pro es un procesador de 32 bits, pero el bus de direcciones externo tiene un tamaño de 36 bits, y el bus de datos externo de 64 bits.

Los microprocesadores de 64 bits han existido en las supercomputadoras desde 1960 y en servidores y estaciones de trabajo basadas en RISC desde mediados de los años 1990. En 2003empezaron a ser introducidos masivamente en las computadoras personales (previamente de 32 bits) con las arquitecturas x86-64 y los procesadores PowerPC G5.

Aunque una CPU puede ser internamente de 64 bits, su bus de datos o bus de direcciones externos pueden tener un tamaño diferente, más grande o más pequeño y el término se utiliza habitualmente para describir también el tamaño de estos buses. Por ejemplo, muchas máquinas actuales con procesadores de 32 bits usan buses de 64 bits (p.ej. el Pentium original y las CPUs posteriores) y pueden ocasionalmente ser conocidas como "64 bits" por esta razón. El término también se puede referir al tamaño de las instrucciones dentro del conjunto de instrucciones o a cualquier otro elemento de datos (p.ej. las cantidades de 64 bits de coma flotante de doble precisión son comunes). Sin más calificaciones, sin embargo, la arquitectura de las computadoras de 64 bits tiene integrados registros que son de 64 bits, que permite procesar (interna y externamente) datos de 64 bits.

IMPLICACIONES DE ARQUITECTURA

Los registros en un procesador se dividen generalmente en tres grupos: enteros, coma flotante y otros. En todos los procesadores de propósito general, sólo los registros enteros pueden almacenar punteros (una dirección de algún dato en memoria). Los registros que no son de enteros no se pueden utilizar para almacenar punteros para leer o escribir memoria y por tanto no se pueden utilizar para evitar cualesquiera restricciones impuestas por el tamaño de los registros enteros.

Casi todos los procesadores de propósito general (con la notable excepción de muchos ARM e implementaciones MIPS de 32 bits) han integrado hardware de coma flotante, que puede o no utilizar registros de 64 bits para transportar datos con el fin de procesarlos. Por ejemplo, la arquitectura X86 incluye instrucciones de coma flotante del x87 que utiliza 8 registros de 80 bits en una configuración en forma de pila; revisiones posteriores del x86 y la arquitectura x86-64 también incluyen instrucciones SSE que utilizan 8 registros de 128 bits (16 registros en el x86-64). En contraste, el procesador de 64 bits de la familia DEC Alpha define 32 registros de coma flotante de 64 bits además de sus 32 registros de enteros de 64 bits.

Debería notarse que la velocidad no es el único factor por considerar en una comparación de procesadores de 32 bits y 64 bits. Usos como la multitarea, las pruebas de carga y el clustering (para computación de alto rendimiento) pueden ser más idóneos para una arquitectura de 64 bits teniendo en cuenta un desarrollo correcto. Los clusters de 64 bits han sido ampliamente usados en grandes organizaciones como IBM, Vodafone, HP y Microsoft, por esta razón.

Mientras las arquitecturas de 64 bits incontestablemente hacen más sencillo el trabajar con grandes conjuntos de datos en aplicaciones como el vídeo digital, computación científica y grandes bases de datos, ha habido un debate considerable sobre si los modos de compatibilidad con 32 bits serán más rápidos que los sistemas de 32 bits del mismo precio para otras tareas. En las arquitecturas x86-64 (AMD64 y EM64T, IA-32e), la mayoría de los sistemas operativos de 32 bits y aplicaciones pueden ejecutarse sin problemas en el hardware de 64 bits.

LIMITACIONES DE MEMORIA

Los procesadores de 64 bits pueden direccionar teóricamente hasta 16 exabytes de memoria, mientras que los procesadores de 32 bits sólo pueden direccionar 4 Gb de memoria RAM. 1 .

Muchas CPU (en 2009) están diseñadas para que los contenidos de un único registro puedan almacenar la dirección de memoria de cualquier dato en la memoria virtual. Por tanto, el número total de direcciones en memoria virtual — la suma total de datos que la computadora puede mantener en su área de trabajo — es determinado por el ancho de estos registros. Empezando en losaños 1960 con el IBM S/360, luego (entre muchos otros) la computadora VAX de DEC en los años 1970 y luego con el Intel 80386 a mediados de los años 1980, un consenso de facto instauró que 32 bits era un tamaño conveniente de registro. Un registro de 32 bits significa que se puede referenciar 232 direcciones o 4 gigabytes de RAM. En el momento en que estas arquitecturas fueron concebidas, 4 gigabytes de memoria estaban muy lejos de las cantidades disponibles en instalaciones que se consideraban suficiente "espacio" para direccionamiento. Las direcciones de 4 gigabytes se consideraban un tamaño apropiado con el que trabajar por otra importante razón: 4 mil millones de enteros son suficientes para asignar referencias únicas a la mayoría de cosas físicamente contables en aplicaciones como bases de datos.

No obstante, con el paso del tiempo y las continuas reducciones en el coste de la memoria (véase la Ley de Moore), al comienzo de los años 1990, comenzaron a aparecer instalaciones con cantidades de RAM próximas a los 4 gigabytes, y comenzó a ser deseable el uso de espacios de memoria virtual que superaban el límite de 4 gigabytes para manejar ciertos tipos de problemas. Como respuesta, varias empresas empezaron a lanzar nuevas familias de chips con arquitecturas de 64 bits, inicialmente para supercomputadoras, estaciones de trabajo de grandes prestaciones y servidores. Las computadoras de 64 bits se han ido moviendo hacia la computadora personal, comenzando en 2003 con la innovadora tecnología AMD64 (denominada genéricamente x86-64 por su completa compatibilidad inversa con los sistemas x86), los AMD's K8 (Athlon 64) y la arquitectura PowerPC de Macintosh de Apple Computer con los procesadores PowerPC 970 G5 Antares, y a procesadores EM64T en el 2006, basadas también en tecnología x86-64, llegando a ser comunes en PC de gama alta. La aparición de la arquitectura de 64 bits efectivamente incrementa el límite a 264 direcciones, equivalente a 17 179 869 184 gigabytes o 16 exabytes de RAM. Para poner esto en perspectiva, en los días en que 4 MB de memoria principal eran comunes, el límite máximo de memoria de 232 direcciones era unas 1000 veces mayor que la configuración típica de memoria. En 2007, cuando 1GB de memoria principal es común, el límite de 264 es unos diez mil millones de veces superior, es decir diez millones de veces más de espacio.

Muchos PC de 64 bits del mercado tienen actualmente un límite artificial en la cantidad de memoria que pueden reconocer, pues las limitaciones físicas hacen muy poco probable que se vaya a necesitar soporte para los 16 exabytes de capacidad total. El Mac Pro de Apple, por ejemplo, puede configurarse físicamente con hasta 32 gigabytes de memoria, y por ello no hay necesidad de soportar más allá de esa cantidad. Un núcleo linux reciente (versión 2.6.16) puede ser compilado con soporte para hasta 64 gigabytes de memoria. Según Apple la nueva versión de su sistema operativo teóricamente direcciona 16 Terabytes de memoria.

Arquitecturas de microprocesador de 64 bits actuales

Las arquitecturas de microprocesador de 64 bits (a fecha de 2006) comprenden:

La arquitectura DEC Alpha (véase la cronología de Digital Alpha)

La arquitectura IA-64 de Intel (usada en las CPUs Itanium de Intel)

La arquitectura AMD64 de AMD (previamente conocida como x86-64), una versión de 64 bits de la arquitectura x86 (usada en las CPUs Athlon 64, Opteron, Sempron y Turion 64).

Intel usa ahora el mismo conjunto de instrucciones en los procesadores Pentium 4 y Xeon nuevos y en los procesadores Core 2 Duo, llamándola Intel 64 (previamente conocida como EM64T, originalmente IA-32e). Los fabricantes de software Microsoft y Sun Microsystems llaman a este conjunto de instrucciones "x64".

La arquitectura SPARC (de 64 bits desde SPARC V9)

La arquitectura UltraSPARC de Sun

La arquitectura SPARC64 de Fujitsu

La arquitectura POWER de IBM (de 64 bits desde POWER3 y las variantes RS64)

La arquitectura PowerPC de IBM/Motorola (el PowerPC 620 de 64 bits y las variantes PowerPC 970)

La arquitectura z/Architecture de IBM, usada por los mainframes zSeries y System z9, una versión de 64 bits de la arquitectura ESA/390

Las arquitecturas MIPS IV, MIPS V, y MIPS64 de MIPS Technologies

La familia PA-RISC de HP (de 64 bits desde el PA-RISC 2.0)

Muchas arquitecturas de procesador de 64 bits pueden ejecutar nativamente código de la versión de 32 bits de la arquitectura sin ninguna penalización en el rendimiento. Este tipo de soporte se conoce frecuentemente como soporte biarquitectura o más generalmente como soporte multiarquitectura.

 

Disponibilidad del Software

Los sistemas de 64 bits algunas veces carecen de software equivalente escrito para arquitecturas de 32 bits. Los problemas más graves son debidos a controladores de dispositivoincompatibles. Aunque gran parte del software puede ejecutarse en modo de compatibilidad con 32 bits (también conocido como un modo emulado, p. ej. la Tecnología Microsoft WoW64), normalmente es imposible ejecutar un controlador de dispositivo o un programa similar, en ese modo ya que habitualmente se ejecuta entre el SO y el hardware, donde no se puede usar la emulación directa. Muchos paquetes de software de código abierto pueden simplemente ser compilados para trabajar en un entorno de 64 bits en sistemas operativos como GNU/Linux. Todo lo que se necesitaría en este caso es un compilador (normalmente GCC).

 

 

EN PROCESO Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis